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The fractional Fokker-Planck equation, which contains a variable diffusion coefficient, is discussed and
solved. It corresponds to the Lévy flights in a nonhomogeneous medium. For the case with the linear drift, the
solution is stationary in the long-time limit and it represents the Lévy process with a simple scaling. The
solution for the drift term in the form � sgn�x� possesses two different scales which correspond to the Lévy
indexes � and �+1 ���1�. The former component of the solution prevails at large distances but it diminishes
with time for a given x. The fractional moments, as a function of time, are calculated. They rise with time and
the rate of this growth increases with �.

DOI: 10.1103/PhysRevE.79.040104 PACS number�s�: 05.40.Fb, 05.10.Gg, 02.50.Ey

Transport processes in physical systems can be very com-
plex. The traditional statistical description, which relies on
uniform Gaussian noises and position-independent transition
probabilities, must fail for many realistic problems. A need
for an alternative approach is obvious, for example, when
one considers porous, irregular materials, containing impuri-
ties or entanglements which act as obstacles and dynamical
traps �1�. Transport in a heterogeneous, in particular fractal,
material involves position-dependent transition rates and
highly complex driving forces which can be handled in a
statistical manner �quenched disordered media� �2�. The
Gaussian distribution not always applies. In systems which
are characterized by long-range correlations and nonlocal in-
teractions, one can expect the presence of long tails of the
driving noise, i.e., one should consider the general Lévy dis-
tributions. It is so for many physical phenomena �3�, in par-
ticular in biological �4,5�, social �6�, and epidemiological
problems �7�. From the Langevin equation, driven by the
homogeneous Lévy noise, follows the Fokker-Planck equa-
tion �FPE�, which is fractional �8–12�. The importance of the
general Lévy distribution stems from its stability: it acts as
an attractor in the functional space and there are no other
attractors. The physical reason behind the Lévy non-
Gaussian processes traces back to the nonhomogeneous
structure of the environment, in particular fractal or multi-
fractal. However, this basis and the essential feature of the
Lévy process is only rarely taken explicitly into account, and
transport processes are described in terms of linear stochastic
equations. The medium structure is usually reflected only in
the form of the external potential or as a time dependence of
the stochastic driving. In this paper, we consider a nonhomo-
geneous Lévy noise which leads to a position-dependent dif-
fusion coefficient in FPE and construct the asymptotic solu-
tion of FPE.

The problem of nonhomogeneous stochastic driving can
be posed in a form of the Langevin equation,

dx�t� = F�x�dt + ��x�dL , �1�

with the multiplicative noise which is understood in a sense
of the Itô interpretation. Equation �1� can be regarded as a
result of the adiabatic elimination of fast variables for non-
linear processes with additive fluctuations. In the Gaussian
case, it is well suited for many such problems, e.g., the en-

semble of two-level atoms in the electromagnetic field
�Maxwell-Bloch equations�, the parametric generation of co-
herent fields by incoming laser field, the Raman scattering,
and the autocatalytic reactions �13�. In the present paper, we
assume that the noise L�t� is the uncorrelated Lévy process
with the stability index � �0���2�, the median �, and the
scale parameter K�. The cumulant expansion of the charac-
teristic function, truncated at the order �, produces the fol-
lowing fractional FPE �14�,

�

�t
p�x,t� = −

�

�x
�����x� + F�x��p�x,t��

+ K� ��

� �x��
�D�x�p�x,t�� , �2�

for the probability density distribution of the variable x; in
the above equation �� /��x�� is the Riesz fractional derivative
and D�x�= ���x���. The initial condition is p�x ,0�=��x�.
Equation �2� has been extensively studied for D�x�=const
�15�.

On the other hand, equations in form �2� follow directly
from master equation for a jumping process:

ṗ�x,t� =� dx��w�x�x��p�x�,t� − w�x��x�p�x,t�� . �3�

For example, modeling the thermal activation of particles
within the folded polymers leads to the FPE with the variable
diffusion coefficient, which results from the polymer hetero-
geneity �16�. In general, D�x� in FPE is variable if the tran-
sition probability w�x �x���w��x−x���. It is the case also for
a coupled continuous time random walk �CTRW� which is
defined in terms of a Poissonian waiting time distribution
with a variable jumping rate ��x�, as well as of the
Lévy distribution of jumping size Q�x� �17,18�. Then
w�x �x��=��x��Q��x−x���; FPE takes form �2� with
D�x�=��x�. The parameter � can depend, in general, on the
position before the jump. If it is constant, the drift term takes
the form 	���x�, where �= 
x�Q. The solution of that equa-
tion for the power law ��x� and �=0 is still the Lévy distri-
bution �18�.

In this paper we demonstrate that the stability property
holds also for some systems which contain the driving term
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F�x�. That is by no means obvious; for example, the sepa-
rable solution of the fractional Schrödinger equation in Ref.
�16�, which is characterized by the exponential diffusion co-
efficient and a periodic potential, looses its dependence on �
altogether, in the asymptotic limit. For a system with a
power-law external potential, �x�c, driven by the Lévy noise
with the constant diffusion coefficient �19�, the stochastic
properties depend on c: the Lévy index in the stationary so-
lution remains unchanged for the harmonic potential,
whereas for larger powers the asymptotics is determined by
c. As a result, the variance can be finite. We will solve Eq.
�2� for the power-law diffusion coefficient, D�x�= �x�−	 �20�,
and for two simplest forms of F�x� which correspond to sym-
metric potentials.

It is convenient to handle Lévy processes by means of the
Fox functions. If the solution of the FPE is to be the Lévy
process, one can expect that it has the following scaling form

p�x,t� = Na�t�H2,2
1,1�a�t��x�
�a1,A1�,�a2,A2�

�b1,B1�,�b2,B2�

� , �4�

where N is the normalization constant. Expression �4� is uni-
versal for any Lévy process �21�. We assume the solution of
Eq. �2� in this form. To find the coefficients, we require that
Eq. �2� is satisfied by Eq. �4� in the diffusion �fluid� limit of
small wave numbers k. Therefore, the solution in the form
�4� should coincide with the exact solution of Eq. �2� for
large �x�.

We begin with the case F�x�=−�x ��
0� which corre-
sponds to the harmonic-oscillator potential. Moreover, we
assume �=0 and �+	
0. The FPE takes the form:

�

�t
p�x,t� = �

�

�x
�xp�x,t�� + K� ��

� �x��
��x�−	p�x,t�� , �5�

and the Fourier transformation produces the result

�

�t
p̃�k,t� = − �k

�

�k
p̃�k,t� − K��k��Fc��x�−	p�x,t�� . �6�

To solve Eq. �6�, we follow the procedure from Refs.
�18,22�, where also the appropriate formulas are provided.
Due to the multiplication rule, the argument of the Fourier
transform in the last term is the Fox function of the same
order as p�x , t�. We apply the formula for the cosine Fourier
transform and expand the results in the fractional powers of
�k�. In order to adjust the terms on both sides of Eq. �6�, we
have to introduce conditions on the powers and to eliminate
some of the terms by an appropriate choice of the coeffi-
cients. As a result, we determine the following coefficients of
the Fox function: a1=1− �1−	� / ��+	�, A1=1 / ��+	�,
b2=1− �1−	� / �2+	�, and B2=1 / �2+	�. Those values are—
for any choice of the other parameters—a sufficient condi-
tion for Eq. �4� to represent the Lévy process in the lowest
order of the k expansion:

p̃�k,t� � 1 − h�a−��k��. �7�

For the Fourier transform in the last term in Eq. �6�, we
need to keep only the term k0. We obtain
p̃	=Fc��x�−	p�x , t���h0a	, where a	 results from the trans-
formation to the scaled variable. The neglected terms on both

sides of Eq. �6� are of the order �k�2�+	. The expansion of the
Fox function around zero and � shows that �b1 ,B1� corre-
sponds to the behavior of p�x , t� at x=0, whereas �a1 ,A1�
determine the asymptotics ��x�→��. Therefore, the former
ones cannot be determined in the small k approximation. We
assume values which correspond to the small �x� limit of the
master-equation solution for CTRW �22�: b1=	 and B1=1;
that process is described by Eq. �5� with �=0. To settle a2
and A2, which only weakly influence p�x , t� in the asymptotic
limit, we require that the x dependence of the distribution
�Eq. �4�� for �=0 should coincide with the stretched-
Gaussian exact solution in the limit �→2 �22�; then:
a2=1 /2+ �1−	� / �2+	� and A2= �1+	� / �2+	�. The coeffi-
cient h� follows directly from the expansion formula:

h� = N�� + 	���− ����1 + � + 	�cos�
�/2�/

��1/2 + �� + �	 + 2�/�2 + 	����− �� + 	�/�2 + 	�� ,

whereas h0=�0
�p	�ax , t�d�ax�=lims→−1 ��s�=N��+	� /

�2+	���1 /2− �	2+	−2� / �2+	��, where ��s� is the Mellin
transform from the Fox function. Similarly we obtain the
normalization constant: N=��−	 / �2+	����1 /2+2 / �2+	�� /
2��1+	���−	 / ��+	��. Inserting p̃ and p̃	 into Eq. �6� yields
the equation for a�t�:

ȧ = �a − K� h0

�h�
a�+	+1, �8�

which can be solved by separation of the variables:

a�t� = � �/cL

1 − exp�− ��� + 	�t��1/��+	�

, �9�

where cL=K�h0 /�h�. For 	=0, the above solution agrees
with that of Ref. �10�.

Expansion of the Fox function in powers of 1 / �x� reveals
the asymptotics of the Lévy process: p�x , t�	a�t�−��x�−�−1

for �x�→�. a�t� approaches with time a constant which cor-
responds to the stationary solution of FPE. The speed of that
convergence depends on 	: it is rapid for large 	, whereas
negative values of 	 can substantially hamper the conver-
gence. The meaning of the parameter 	 in the context of the
diffusion process becomes clear when we consider the case
for which the variance exists, namely, the Gaussian case
�=2; it is involved in solution �4�. The coefficients of the
Fox function on its main diagonal are then equal and we can
apply the reduction formula. The solution reads

p�x,t� = Na�t�H1,1
1,0�a�t��x���1

2
+

1 − 	

2 + 	
,
1 + 	

2 + 	
�

�	,1�
�� . �10�

The contribution to the Barnes-Mellin integral from the resi-
dues vanish for large �x� and the asymptotic form of the Fox
function is stretched exponential �22,23�:

p�x,t� 	 a1+	�x�	exp�− c2�a�x��2+	� , �11�

where a�t� is given by Eq. �9� with �=2 and
c2= �1+	�2+	 / �2+	�3+	. The variance can be easily evalu-
ated:

TOMASZ SROKOWSKI PHYSICAL REVIEW E 79, 040104�R� �2009�

RAPID COMMUNICATIONS

040104-2




x2� = −
�2

�k2 p̃�0,t� = h2a−2, �12�

where h2=lim�→2 h�. If �=0, Eq. �12� predicts the normal
diffusion �	=0�, subdiffusion �	
0�, and superdiffusion
�	�0�. Otherwise, the variance converges with time to a
constant. Therefore, the parameter 	 governs the transport
speed. In the coupled CTRW, a large 	 means that the aver-
age trapping time strongly rises with the distance.

The system, which has been discussed above, is charac-
terized by the same stability property as that of the driving
noise: it is Lévy distributed with the parameter �. Moreover,
it reveals the simple scaling. One can ask whether the same
properties hold for other systems driven by the Lévy noise
and a symmetric potential �24�. The next case demonstrates
that, even if the stability property is preserved, the index �
may change. Let us consider the drift in the form
F�x�=� sgn�x�, which corresponds to the wedge-shaped po-
tential. We assume 0���1, i.e., a process of the infinite
mean, and �+	
1. The FPE is the following

�

�t
p�x,t� = �

�

�x
�sgn�x�p�x,t�� + K� ��

� �x��
��x�−	p�x,t�� . �13�

Its cosine Fourier transform reads

�

�t
p̃�k,t� = − �k

�

�k
Fc��x�−1p�x,t�� − K��k��Fc��x�−	p�x,t�� ,

�14�

and the factor �x�−1, which results from the change of the sine
transform to the cosine one, introduces a new scale. We take
into account that double scaling by assuming the solution in
the form p�x , t�=N�p1�x , t�+�p2�x , t��, where

pi�x,t� = f i�t�H2,2
1,1� f i�t��x�
�a1

�i�,A1
�i��,�a2

�i�,A2
�i��

�b1
�i�,B1

�i��,�b2
�i�,B2

�i��

� , �15�

and � is determined by the initial condition p�x ,0�=��x�
= ���x�+���x�� / �1+��; we assume that ��0 if ��0. The
solving method is similar to the previous case: we insert Eq.
�15� into Eq. �14� and compare the terms. The essential point
is to realize that the first term on right-hand side upgrades the
index � by one because the expansions of Fc��x�−1pi�x , t��
are determined by the terms �k��2−a1

�i��/A1
�i�

. Then
Fc��x�−1pi�x , t���const−h��

�1�f1
−��k��+1, where terms of the

order �+2 have been neglected. We put ai
�1�=ai, Ai

�1�=Ai,
bi

�1�=bi, and Bi
�1�=Bi. The coefficients for p2 are the same

except �→�+1. By comparing the terms of order � and
�+1, we obtain a set of two differential equations

�̇1 = K��h0
�1�

h�
�1��1

−	/� + �
h0

�2�

h�
�1��2

−	/��+1�� ,

�̇2 = �� + 1�
�h��

�1�

�h�
�2� �1, �16�

where �1= f1
−�, �2= f2

−�−1, h�
�1�=h�, h�

�2�=h�+1, h0
�1�=h0,

h0
�2�=h0��→�+1�, and

h��
�1� = − N�� + 	���− � − 1���2 + ��sin�
�/2�/

��1/2 + �� + �	 + 2�/�2 + 	����− �� + 	�/�2 + 	�� .

Let us assume �
0. The asymptotic form of p�x , t� in-
volves contributions from both � and �+1, p�x , t�
=c1f1

−��x�−�−1+c2f2
−�−1�x�−�−2+o��x�−2�−	−1�, where c1 and c2

are constants. Therefore, the long tails which correspond to
index � prevail at large distances and the mean value is
infinite. However, in the limit of long time the relative con-
tribution to p�x , t� from p1 diminishes for a given x since
f2�t� falls faster than f1�t�. To demonstrate that, we need to
estimate the ratio �1 /�2= f1

−� / f2
−�−1. That quantity is pre-

sented in Fig. 1. Its time dependence can be very well repro-
duced by the function 1 / t and this pattern is generic for all
values of �, �, and 	. Consequently, the contribution from
p1, which originates from the Lévy process with the order
parameter �, gradually fades away. Instead, the term corre-

FIG. 1. �Color online� The ratio which determines the relative
contribution to the solution of Eq. �13� from the terms which cor-
respond to the Lévy indexes � and �+1 for various parameters of
the process. All curves fall like 1 / t.

FIG. 2. �Color online� The fractional moments calculated from
Eq. �17� for �=0.4, �=0.5, 	=1, and a few values of �.
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sponding to �+1 dominates the distribution at large time and
p1 enters the asymptotic expression only with a small weight.

The transport in superdiffusive systems is used to be char-
acterized by fractional moments of the order �, 
�x���, where
���, since all higher moments, in particular the variance,
are divergent. That moment is easy to evaluate as the Mellin
transform �i from the functions pi�x , t�:


�x��� = 2�
0

�

x�p�x,t�dx

= 2N�f1
−��1�− � − 1� + �f2

−��2�− � − 1��

	��−
	 + �

� + 	
� f1

−� + ���−
	 + �

� + 	 + 1
� f2

−�. �17�

Figure 2 presents the fractional moments for a few values of
the parameter �. The dependence on time is algebraic and the
power rises with �; for �=0 the moment is 	t�/��+	�.

Finally, let us mention the case of the attractive potential,
��0. We require that also ��0, in order to avoid shrinking

of p2 with time �c.f. second equation in Eq. �16��, which is
unphysical. The negative �, in turn, results in negative p�x , t�
for large time since p1 falls faster with time than p2. There-
fore, the above solution of Eq. �13� is correct for ��0 only
if time is not very large. The fractional moment rises slower
than for �=0 and also weaker than algebraically, which is
presented in Fig. 2.

In summary, we have studied the stochastic systems in
which the nonhomogeneous structure of the medium is re-
flected not only by an external potential but also directly by
the random force in the form of the Lévy distribution. Such
systems are described by the fractional FPE with the variable
diffusion coefficient; they have been solved in the limit of
small wave numbers. The system can have the same stability
properties as the driving noise; it is the case for the linear
drift. However, the other drift we have considered, 	sgn�x�,
requires the additional Lévy process and then the system has
the double scaling. That second Lévy distribution is charac-
terized by larger order parameter and its weight rises with
time.
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